
SU(6) and chiral SU(3) symmetry breaking

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1973 J. Phys. A: Math. Nucl. Gen. 6 409

(http://iopscience.iop.org/0301-0015/6/3/014)

Download details:

IP Address: 171.66.16.73

The article was downloaded on 02/06/2010 at 04:43

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0301-0015/6/3
http://iopscience.iop.org/0301-0015
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A:  Math., Nucl. Gen., Vol. 6 ,  March 1973. Printed in Great Britain. 0 1973 

SU(6) and chiral SU(3) symmetry breaking 

R Delbourgo 
Physics Department, Imperial College of Science and Technology, London SW7 2BZ, UK 

MS received 24 October 1972 

Abstract. SU(6) breaking is used to obtain the form of chiral SU(3) breaking. A very specific 
mixture of (3, 3)1+8, (6,6)' and (8,8)' chiral representations is predicted. 

The nature of chiral SU(3) @ SU(3) symmetry breaking has become a subject of debate. 
Since the original proposal (Gell-Mann et a1 1968) that the Hamiltonian density H' 
primarily belongs to the (3,3)@(3,3) representation, it has been suggested that (8,8) 
terms can provide significant corrections (Barnes and Isham 1970, Genz and Katz 1970, 
Sirlin and Weinstein 1972), and recently it has been proposed (Dittner et a1 1972, Auvil 
1972) that the (6,6)@(6,6) terms have no reason to be neglected either. In an effort to 
shed some light on the controversy we have attempted to use nonchiral SU(6)@SU(6) to 
provide some important clues as to the character of H', and we shall report on this here. 
In terms of the quark fields $ which make up the supermultiplets we find that the 
predominant part of H' can be compactly expressed as 

where, for mesons c = 0.48, c' = 0.12 and for baryons c = 0.84, c' = 0.46 in GeV units. 
If we identify $ with the quark field which generates the current algebra, then this 
leads to a very specific combination of (3,3)'+*, (6,6)' and (8,8)' chiral terms. We give 
numerical details below and some of the simplest consequences. 

Supermultiplet schemes adopt nonchiral SU(6) @ SU(6) and classify the lowest lying 
mesons and baryons as (6,6) and (56, l )  representations respectively. In quark field 
language we write 

For particles at rest the labels A = a,a run through six values and one can pick out the 
usual particle wavefunctions from the (normalized) expansions 

We shall assume the existence of a Hamiltonian Ho which leads to these SU(6) represen- 
tations, such that the quarks which constitute the hadrons are effectively massless. 
The perturbation H' then includes the quark mass terms and then serves to generate all 
the masses of the composites in the theory. 
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Knowledge about SU(6) breaking has been available for some years (Harari and 
Rashid 1966, Fayyazzuddin and Rashid 1966, Akyeampong 1966). To a reasonable 
approximation the meson (mass)2 matrix is given by a sum of tensorst 

{ 1, 1}'@[{35'"'', l}'+{ 1, 35'8,'}8]0{35('~3', 35"33~}'@{35'83'', 35'"'' 1 
@{35(8,3), 35(8,3) 1 1 

and the baryon (mass)2 matrix is dominated by the tensors 

{ l ,  1}'@[{35'8,'), 1j8+{1, 35'8'1)}8]@[{405(8'1), l j 8 + {  1,405'8~')}8]. 

In terms of U and U spinors normalized to unity we can characterize the meson tensors 
by means of the linear combination$ 

pi ( i iu  + av) +p:(u3u3 + a3u3)+pL:(iiau). (vav)+pu:(iil'u)(al'u)+p:(ual'u). (CaA'u) 

while for baryons it is enough to consider 

mi(iiu) + m:(ii3u3) + mi(iiau) . (iiau). 

Taken between massless supermultiplet wavefunctions and comparing with physical 
masses we arrive at  the estimates (in GeV units), pi N 0.23, p: 2: 0.22, pi N - 0.12, p 3  'v 

p i  N 0.03 and mi 2: 0.42, mf N 0.43, m: N 0.23. 
2 

This suggests that we collect terms in the form 

M2(mesons) N 0.23(Uu+t;v+ii3u3 +fi3v,)-0.12(iiau). (~au)+O~06( i i l iu ) (~ l 'u )  

M2(baryons) N 0.42(Uu + ii3u3) + 0*23(iiau) . (iiau). ( 2 )  

t Expanding the physical states in the exact formula (OlH(0)lO) = 2mZ, as a series of eigenstates of the bare 
Hamiltonian H , ,  leads naturally to a mass2 formula if we insist on the same normalization for bosons and 
fermions. I t  is fatuous to pretend that the first-order formula gives anything but a rough hint of the bulk of 
the symmetry breaking. The work on SU(6) mass formulae has therefore only been used as a guide to H , and 
of necessity the mass relations can only be approximately valid to this order. If anything, the agreement in 
table 1 is probably too good. 
$ If we define creation operators ut  and b' for quarks and antiquarks, so that a meson state is written 

Ip, ala) = a"A'@)b~A.@)~O) 

then we can construct a meson field operator @:(x) in the usual way, 

such that its one particle matrix element is the momentum space wavefunction, (OJ@~(O)lp)  = @:@). 
A similar construction, using a symmetrical product of three quarks, can be used to obtain baryon field 

operators. If now we take matrix elements of quark bilinears, or products thereof, the creation operators 
cancel out to leave us with products of wavefunctions. For instance, suppressing SU(3) labels, 

It is in this sense that the mass tensor matrix elements written below are to be understood. The quark field 
$(x) is indeed a second-quantized operator. 
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To show the reasonableness ofthe fit we exhibit in table 1 the experimental and calculated 
masses side by side. 

Table 1. Physical against predicted hadron masses, using formula (1) or (2). Absence of 27 
contributions allows singlet and octet masses to be derived by the Gell-Mann-Okubo 
relation. The D/F ratio which splits the A from the Z cannot be predicted a priori 

(Meson mass)’ (Baryon mass)’ 

Experimental Calculated Experimental Calculated 

n2 = 0.02 
K2 = 0.24 

= 0.32 
= 0.90 

p 2  = 0.58 
K” = 0.79 
U: = 0.87 
U; = 0.79 

0.02 N 2  = 0.88 0.88 
0.25 33A2 +E’) = 1.29 1.30 
0.33 E’ = 1.73 1.72 
0.89 A’ = 1.53 1.49 
0.58 2” = 1.92 1.91 
0.8 1 E*’ = 2.34 2.33 
0.89 R2 = 2.80 2.75 
0.73 

We can now try to rewrite these expressions in terms of quark fields. The first thing 
to remember is that iiu and iju are SU(6) invariants (which could multiply any terms of 
the expansion without effect) and these are the large components of $$ and $yo$. By 
Lorentz invariance we are only entitled to consider functions of $I) and of ($Y&)~ ,  and 
we can discard the latter in so far as it would give rise to observable (iiau) . (iau) cor- 
rections to M 2 .  For simplicity we will also suppose that the SU(6) singlet terms 
($I,$)~, (IJ$)~, . . . are absent from H’, an assumption which may need to be revised in the 
future because of the bearing of such interactions on chiral symmetryt. Recognizing 
that iiu is the large component of i$y5$ we can immediately identify (iiA’o)(in’u) with 
-%$y5Ai$)’. The situation for iivu and Cau is much less definite. They are the large 
spatial components of $o,,$ or i$yflys$, tensors which lead automatically to further 
components Pav or iiu for their relativistic completions and which must be removed 
since they do not appear in M 2 .  The subtraction of these unwanted pieces is much 
easier to achieve for the axial rather than the tensor choice so we shall identify 

and 

Apart from arguable aesthetic values, the choice we have made has the virtue of giving 
the same sign to the c‘ interaction term for mesons and baryons. Wecan thus summarize 
our conclusions for nonchiral SU(6)@SU(6) by formula(1). i t  is rather remarkable that 
two constants suffice to give a reasonable description of the masses. We think this result 
is valuable in its own right irrespective of the chiral arguments to follow. 

In arriving at these SU(6) mass formulae we have taken linear representations of the 
nonchiral group corresponding to the finite nonunitary (unitary) basis of the relativistic 
U(6,6) (U( 12)) group provided by the spinor 4. Now from $ we can construct the usual 
vector and axial vector currents whose time components surely generate the chiral 

(Caul with Wh@YMZ +@rs4V2) 

(Ga4 * with - W Y P Y 5 $ l 2  +(3Y5$)2). 

t One can set up nonlinear realizations based entirely on quark fields. For instance, in a stereographic co- 
ordinate system, z = f($y5r$)/(f2 -(&b)z)l’z shows how J$ can enter at a fundamental level. 
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SU(3)@SU(3) group because the interaction is supposed to be nonderivative. Further- 
more this current algebra can be generalized to the full U(12) group if one adopts the 
hermitian currents 

Sk = +$Ak$, Tiv  = &blrvik$, Pk = i $ y S A k $ ,  V i  = i$y,Ak$, Ak = ii$y,y,Ak$ ; 

k = 0 , 1 ,  . . . ,  8 (3) 

and does a spatial integration to arrive at the appropriate hermitian generators. In 
terms of these bilinears, 

H' 4(3)"2~(S0 - 8 - " Z S 8 ) - 6 ~ ' ( A ~ A ~ + P o P o + J P ' P L ) .  (4) 
Now in chiral dynamics we may or may not require nonlinear realizations. A chiral 
transformation from the supermultiplet quark (I to 

q = exp{iAk(Xk+iysX!)}$ 

will leave invariant the Vand A currents, 

VL f A; = $Gyp( 1 k iy,)j.kq 

but drastically alters to a nonlinear structure in x the nature of hadrons viewed as q 
composites. Since we have taken the attitude that the $ are effectively massless before 
introduction of the perturbation H', the possibility of having a chiral invariant mass 
term mqq in H, does not arise ; i t  is therefore consistent, though by no means necessary, 
to suppose that the current quarks q and $ are one and the same. With these reservations, 
we shall thus restrict ourselves to seeing how H' transforms linearly under SU(3)@SU(3). 
When we have a better idea of the connection (Gell-Mann 1972) between 4 and $ it 
should be possible to improve on our work. 

With respect to chiral SU(3) the Dirac bilinears transform as the multiplets, 

S,  T, P = (3,3)@(3,3), V, A = (8, l )O(l ,  8)0(1, 1). 

Thus A i A ;  is a (1 ,  1)  chiral invariant, S will provide the traditional (3,3)"' breaking 
and the P2 terms give a particular 

[(l, 1)+(3,3)+(3,3)+(6,6)+(6,6)+8, S)]' 

singlet contribution. We therefore contend that all symmetry breaking terms proposed 
so far are indeed present in H' but with well-defined relative coefficients provided by 
SU(6). Observe the ratio -8-l" of scalar octet to scalar singlet both for mesons and 
baryons. The repercussions for chiral dynamics are almost self-evident and we shall 
only examine the most obvious ones here : mass formulae, scattering lengths and sigma 
terms, relying on the usual reduction methods for treating soft pseudoscalar mesons ; 
in this connection it is worthwhile to point out that there need be no clash between 
chiral theory and supermultiplet theory, for in the limit as the meson mass p vanishes, 
the supermultiplet wavefunction @(p) = ( p  + y . p)(y5q5,  - y A 4 J  shows the pseudoscalars 
to be axial derivatives (PCAC) and the vectors to  be tensor derivatives (PCTC?). 

The standard formula for pseudoscalar meson masses, 

using our H' and the commutators, 

[Fk,, SI] = - idkImPm and [Fk, , PI] = ldk"S" 
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gives the mass relations 

i f $ :  = -0~78(S0)+0~16(6P0P0-2S0S0+7P8PE- 11S8S8) 

$ f i p i  = - 1~16(S0)+0~16(6P0P0-2S0S0+7P8P8- llS8S8) 

$ f ; p i  = - 1.30(S0) +0.16(6P0P0 - 2S0S0 + 7P8P8 - 1 1S8S8) 

i f : &  = - 1*04(S0) +0*16(6P0P0 -6S0S0 + 16P8PE - 16S8S8) 

if we assume the vacuum is SU(3) symmetric so that 

(9) = 6 k O ( S O ) ,  ( S i $ )  = 6'J(SES8), etc. 

The relevant vacuum expectation values can be evaluated if we set 

f, N f K  N f E  N f ,  = 0.13 GeV. 

Thus (So) N 0.005, 

(6P0P0 - 2S0S0 + 7P8P8 - 1 1SES8) N -0.025 
and 

(6P0P0 -6S0S0 + 16P8P8 - 16S8S8) N 0.015. 

At this stage we can say nothing about the individual values (SESE) etc. 
The pion scattering lengths a, and a, obtained via the relations 

487cpL,a, = A -  8p:/fn 96npnu0 = 5A+32p:/ fn ,  
and 

-2 f ;A  = (OI[F:,[F:,[F:,[F:,H']IIIIo> 
provide more information, namely, 

-f8n f:pn(u,+2a,) = 0~78(S0)-0~11(40P0P0- 14SoSo+47P8P8-73S8SE). 

Of the other four-point meson interactions, the Kn scattering processes and the 
q' + q7cn decay seem the most promising for giving further clues. 

Turning to the baryons, the mass formulae are obtained from the expectation values 
(YIH'IY) where the bare states are massless and the unit baryon number sector of H' is 
considered. Thus, 

m$ N 1.38(Y[So - 8-1'zSE - AoAo P P  - Popo - lP iP i lY ) ,  3 

This is to  be contrasted with the sigma term 
3 

G& = f 1 ( W F ' , ,  [F'; 9 H'lll'r) 
i =  1 

N 1.38('Pl$0+$J(2)S8 +8PoPo-5SoSo+4P'P' -2;iSS'S' +4P4P4-4S4S4 

+$P8P8-$S8S8+fJ2(PO, PE) -4J2(SO, S8}1Y) 

where new expectation values like (SESE) make an appearance. Thus at the level of 
linear chiral SU(3) the mass terms are independent of the sigma terms. Unless one can 
estimate these new scalar matrix elements, by saturating with one particle states say, no 
further progress can be made. 

Another approach which suggests itself by our earlier considerations is to  approxi- 
mate massless vector mesons by the divergence of a tensor current, in contradistinction 
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to vector dominance which relies on a field-current identity. Thus i t  may be possible to 
write f",! = d,T& with T defined as in (3). Like the axial currents, we expect these 
tensor currents to be conserved when H' = 0, in the limit of zero supermultiplet mass 
(thestrong binding limit where theiy . d termin the kinetic Lagrangiancanbedisregarded). 
Letting 

Fr = Tkrd3x I 
we obtain the time development by 

h - , s  [FP, H'] = iPr - 1 ?pTkr d3x = if; I 4; d3x 

on a parallel with 

[F';. H ' ]  = iR\ = i I d3x = i j k  J' 4'; d3x. 

We would then obtain the vector meson masses via 
1 2 2 -A! - 
~ f k ~ k d  d r s  = -(oI[F':, [Ff*H'IIIO) 

by analogy with the pseudoscalar case. There are three difficulties to be overcome 
however : (i) there seems to be no way of measuring a fundamental tensor current in the 
same direct way that the axial enters in the weak interaction. (ii) extrapolations from 
physical to massless vector meson are likely to  be unreliable, and (iii) new expectation 
values are generated by commutation with F, which are not obviously related to the 
pseudoscalar expectation values. 

In spite of these problems and ambiguities we believe that nonchiral SU(6) breaking 
will provide useful insight into the structure of chiral SU(3) breaking. Indeed once the 
relation between the current quarks and the supermultiplet quarks is clarified and 
quantified (Gell-Mann 1972) we are optimistic that the preliminary analysis we have 
presented above can be carried through to its logical end. 
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